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= e use Eulerian approach but mixed
material cells can be problematic:

« Multi-material problems with significant
vorticity/distortion:
— Lagrangian approaches tangle.

— Arbitrary Lagrangian Eulerian (ALE) can’t
merge materials without topology changes.

— Eulerian approach produces mixed-cells.
 Current mixed-cell approaches generally

assume materials are “well” mixed:

— Assume “equilibrated” state

— Single velocity/displacement field

— Lack of intra-element interfaces
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A
%grangian step requires closure model(s)

for mixed-cell properties:
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Why X-FEM:

 Mechanism for intra-element material interfaces.
* Retains base FEM convergence properties.

« Large literature base for X-FEM in context of large
deformation, explicit Lagrangian mechanics.

« Beginning to be adapted to “operator-split” multi-
material Eulerian solid-mechanics [VB06; DLZRM10]:
— explicit (central difference) Lagrangian solve,
— followed by data transfer “remap” to “better” mesh.

« Can be incorporated into existing explicit central-
difference strength/nydrodynamics codes (ALEGRA).
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}' We follow the XFEM decomposition

approach [HHO04, SABOG6] ...

Multi-material enriched element equivalent to multiple
single-material elements:
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#xplicit central difference discretization

requires care for stability ...

Ma" =1 +1

nt

* lumped mass matrix with uniform partitioning of
element mass to nodes [MRMCBO08]

M, = (p Ay, / 4) T 0, = A, /A
* matched with gradient operator mean quadrature
[SABO6] E — JQ B dQ/Ae ]pim’m — EtamAe¢;

* and constraint enforcement between X-FEM
interfaces:
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ﬁe understand the issues but use “node-

segment-like” Lagrange Multipliers...

... In an attempt to:
— minimize interpenetration of X-FEM interfaces,
— and retain a finite stable time-step.
 Other options for explicit X-FEM:
— Merge (small time step) [VBOG6]
— Mortar lagrange multiplier (need care for LBB)
— Penalty (overlap, mass modifications) [DLZRM10]
— Nitsche’s (overlap, mass modifications) [AHD11]
— Vital Vertices LM [BMWO09, HAD11]

... SO we use it anyway for it's practicality and
economy.
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}Forward Increment Lagrange Multiplier

approach [CTK91] ...
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No additional limitations to stable
time step [DLZRM10,VMR10]
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4 ata transfer can be accomplished in a
number of ways:

« With the goal of preserving some key features:
— Conserve mass, momentum and internal energy.
— Do not create new minima and maxima (monotonicity).
— Volume fractions sum to one after remap.

» Options include:
— Interpolation (violates conservation) [DLZRM10]

— Projection methods (violates conservation and
monotonicity)
— Geometric intersection with Van Leer limiting
 conservation is built in.
* limiting preserves monotonicity.
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*‘ Geometric intersection with Van Leer

limiting in two dimensions (1):

 Taylor Series provides functional form on donor mesh:

f(X)/zLﬁ + (X—Xe)t G, + l(x—xe)t He(X—Xe)t —)(]
2

x provides conservation: third-order

fA = [£(x)dQ, = = ——[(x-x,) B, (x~x.)dQ,

24,

» Gradients/hessians compﬁ’?ed as [DK87]: / S
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eometric intersection with Van Leer
limiting in two dimensions (2):

=2

« Scale gradient to enforce monotonicity:
x)=f,+8g(x-x,) G,
: o ‘ g
1 if (f_fz)(f3_fr)2
( fi— ) ( f.— fz) otherwise

Loif (fi=£)(fi-1)20
(fl .f2)/(.fg jg) otherwise

[,

Sg = max(min(sw ,sG,r),O)
o If third-order also scale hessian terms:
F(x)= T+ s6(x=x) G+ G| (x-x) H,(x-x,) =1
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#Geometric intersection with Van Leer

limiting in two dimensions (3):

* Integrate function over donor-acceptor intersection

element and accumulate to acceptor [D83]
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* Further restrict integral ‘n\/ % )
. . I

to filled region of donor
mesh. as, \X
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level-set approach: [DVMRO08]

A
%se interface reconstruction rather than

* Interfaces rebuilt after remap step.

« Using VOF approach:

— Compute material volume-fraction
gradients.

— Reposition interface along normal
|—: to match volume.

— Remove material from cell. n,

/
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vides enhanced results for simple one-
dimensional problem [CTK91]...
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... and simple two-dimensional problems ...

“Rigid” block sliding
frictionlessly between
“rigid” platens.

3 material
cells

material not
meSh-aIigned VEL_X
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Excellent agreement for
momentum compared
to analytical solution.
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A
%nd accuracy comparable to Lagrangian
for more complex problems ...

Taylor anvil
[VBOOG]
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... as well as comparable rates of

convergence ...

O Lagrangian
+ Eulerian X-FEM

Standard Eulerian

converges to a
different solution.

T
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O Trad. MMALE 1
+ MMALE/XFEM p
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this problem remap order has little effect
on accuracy/rate-of-convergence ...

Convergence in height for first-
and second-order remap.
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Density reconstructions
at early time.



re complicated problems demonstrate the
utility/advantages of the approach ...

Whipple Shield used in

satellite protection.
1 —— :

v, = 2400m/s
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rear-plate
momentum error

0.01

High-velocity impact difficult for Lagrangian and
unrealistic for Eulerian are possible with X-FEM.
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Conclusions:

» Developing capability to more accurately treat multi-
material cells in an “operator-split” ALE context.

 Capability builds on existing ALE infrastructure.

» Uses X-FEM ideas to provide provide unique
kinematics for each material in a cell.

 Uses interface reconstruction rather than level-set
Ideas to address conservation and complex
interface intersections.

* Employs higher-order, conservative remapping
algorithms. Advantages are unclear at this point.

« Demonstrates good convergence/accuracy for
problems investigated here.
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